

DEVICE PERFORMANCE SPECIFICATION

KODAK KAC-9637 CMOS IMAGE SENSOR

648 (H) X 488 (V) VGA 68 fps Monochrome CIS

September 2004 Revision 1.92

KAC-9637 Monochrome CMOS Image Sensor VGA 68 FPS

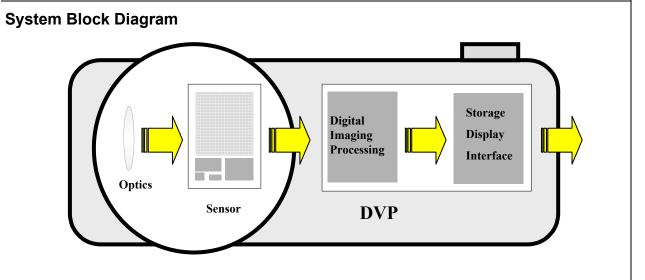
General Description

The KAC-9637 is a high performance, low power, 1/4" VGA CMOS Active Pixel Sensor capable of capturing monochromestill or motion images and converting them to a digital data stream.

Great image quality is achieved by integrating a high performance analog signal processor comprising of a high speed 10 bit A/D convertor, fixed pattern noise elimination circuits and and a programmable gain amplifier. The offset and black level can be automatically adjusted on chip using a full loop black level compensation circuit.

Furthermore, a programmable smart timing and control circuit allowing the user maximum flexibility in adjusting integration time, active window size, gain, frame rate. Various control, timing and power modes are also provided.

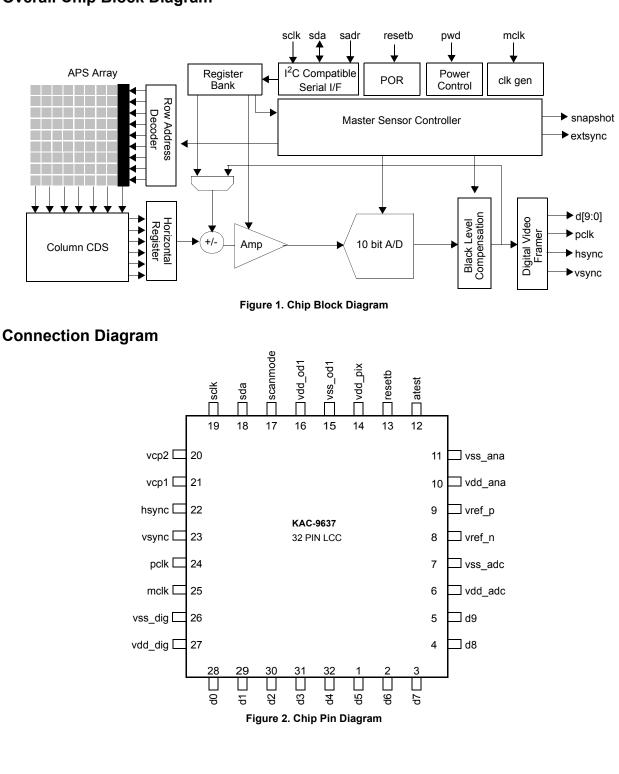
Features


- · Master and slave mode operation
- · Progressive scan read out with horizontal and vertical flip
- Programmable Exposure:
 - Master clock divider
 - Inter row delay
 - Inter frame delay
- Partial frame integration
- Programmable gain amplifier
- Full automatic servo loop for black level & offset adjustment on each gain channel
- Horizontal & vertical sub-sampling (2:1 & 4:2)
- Windowing
- · Programmable pixel clock, inter-frame and inter-line delays
- I²C compatible serial control interface
- · Power on reset & power down mode

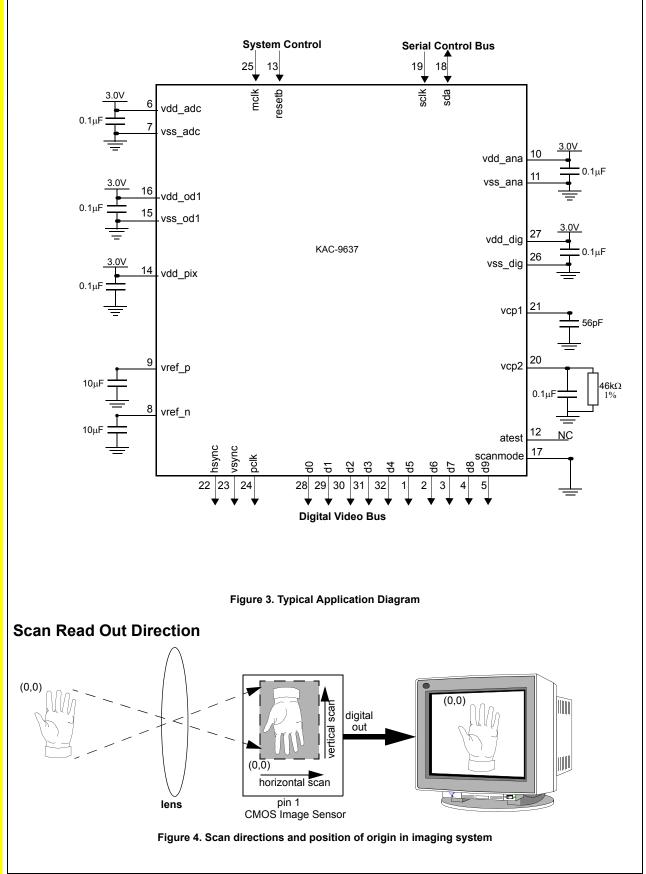
Applications

- Dual Mode Camera
- Digital Still Camera
- Security Camera
- Machine Vision

Key Specifications


Array Format	Total: 488 x 672 Active: 488(V) x 648(H)
Effective Image Area	Total: 2.93mm x 4.03mm Active: 2.93mm x 3.89mm
Optical Format	1/4"
Pixel Size	6.0μm x 6.0μm
Video Outputs	8 & 10 Bit Digital
Frame Rate	68 frames per second
Dynamic Range	57 dB
Electronic Shutter	Rolling Reset
FPN	0.2%
PRNU	1.7%
Sensitivity	2.40 volts/lux*s
Fill Factor	49%
Micro Lens	none
Package	32 LCC
Single Supply	3.0V +/-10%
Power Consumption	130mW
Operating Temp	-10°C to 50°C

Email:imagers@kodak.com


Kodak

Overall Chip Block Diagram

Typical Application Circuit

Pin Descriptions

KAC-9637

Pin	Name	I/O	Тур	Description	
1	d5	0	D	Digital output. Bit 5 of the digital video output bus. This output can be tri-stated	
2	d6	0	D	Digital output. Bit 6 of the digital video output bus. This output can be tri-stated	
3	d7	0	D	Digital output. Bit 7 of the digital video output bus. This output can be tri-stated	
4	d8	0	D	Digital output. Bit 8 of the digital video output bus. This output can be tri-stated	
5	d9	0	D	Digital output. Bit 9 of the digital video output bus. This output can be tri-stated	
6	vdd_adc	I	Р	3.0 volt supply for the 10 bit A/D converter.	
7	vss_adc	I	Р	0 volt supply for the 10 bit A/D converter.	
8	vref_n	I	A	A/D reference resistor ladder low voltage. This is the bottom of the ADC reference ladder and is normally bypassed with a 10 μF capacitor.	
9	vref_p	I	A	A/D reference resistor ladder high voltage. This is the top of the ADC reference ladd and is normally bypassed with a 10 μF capacitor.	
10	vdd_ana	I	Р	3.0 volt supply for analog circuits.	
11	vss_ana	I	Р	0 volt supply for analog circuits.	
12	atest	0	А	Analog test pin. This pin is used for production testing and should not be connected.	
13	resetb	I	D	Digital input with pull up resistor. When forced to a logic 0 the sensor is reset to its defau power up state.	
14	vdd_pix	I	Р	3.0 volt supply for the pixel array. This pin should be connected to the 3.0v analog supp and bypassed to ground with a 10uF capacitor.	
15	vss_od1	I	Р	0 volt supply for the digital IO buffers	
16	vdd_od1	I	Р	3.0 volt supply for the digital IO buffers.	
17	scanmode	I	D	Digital production test pin. This pin should be tied to ground	
18	sda	Ю	D	I ² C compatible serial interface data bus.	
19	sclk	I	D	I ² C compatible serial interface clock.	
20	vcp2	0	A	Analog output, reset charge pump 2 output, connect to vss_ana via a $0.1\mu f$ capacitor. Voltage on this pin should be 5 volt.	
21	vcp1	0	A	Analog output, reset charge pump 1 output, connect to vss_ana via a 56pf capacitor. Voltage on this pin should be 3.6 volt.	
22	hsync	Ю	D	Digital Bidirectional. This is a dual mode pin. When the sensor's digital video port is co figured to be a master, this pin is an output and is the horizontal synchronization pulse When the sensor's digital video port is configured to be a slave, (the default), this pin is an input and is the row trigger.	
23	vsync	IO	D	Digital Bidirectional. This is a dual mode pin. When the sensor's digital video port is co figured to be a master, this pin is an output and is the vertical synchronization pulse. When the sensor's digital video port is configured to be a slave, (the default), this pin is an input and is the frame trigger.	

KAC-9637

Ρ	in Descriptions (continued)							
	Pin Name I/O Typ Description				Description			
	24 pclk O D Digital output. The pixel clock.		Digital output. The pixel clock.					
	25 mclk I D Digital input. The sensor's master clock input.							
	26	vss_dig I P 0 volt power supply for the digital circuits.						
	27	vdd_dig	I	Р	3.0 volt power supply for the digital circuits.			
	29	d1	O D Digital output. Bit 1 of the digital video output bus. This output can be tri-stated.					
	30	d2	0	D	Digital output. Bit 2 of the digital video output bus. This output can be tri-stated			
	31	d3	O D Digital output. Bit 3 of the digital video output bus. This output can be tri-stated					
	32	d4	0	D	Digital output. Bit 4 of the digital video output bus. This output can be tri-stated			

Legend: (I=Input), (O=Output), (IO=Bi-directional), (P=Power), (D=Digital), (A=Analog).

Absolute Maximum Ratings (Notes 1 & 2)

Any Positive Supply Voltage	4.2V
Voltage On Any Input or Output Pin	-0.3V to 4.2V
Input Current at any pin (Note 3)	±35mA
Package Input Current (Note 3	±50mA
Package Dissipation at $T_A = 25^{\circ}C$	see Note 4
ESD Susceptibility (Note 5)	
Human Body Model	2000V
Machine Model	200V
Peak Soldering Temperature (Note 6)	235°C
Storage Temperature	-40°C to 125°C

Operating Ratings (Notes 1 & 2)

Operating Temperature Range All VDD Supply Voltages

-10°C≤T≤+50°C +2.7V to +3.3V

DC and logic level specifications

Symbol	Parameter	Conditions	Min note 9	Typical note 8	Max note 9	Unit
scik, sda i	Digital Input/Output Characterist	lics				
VIH	Logical "1" Input Voltage		0.7*vdd_od		vdd_od+0.5	V
VIL	Logical "0" Input Voltage		-0.5		0.3*vdd_od	V
VOL	Logical "0" Output Voltage	vdd_od = +2.7V, lout=3.0mA			0.4	V
V _{hys}	Hysteresis (SCLK pin only)	vdd_od > +2.0V	0.05*vdd_od			V
I _{leak}	Input Leakage Current	Vin=vdd_od		1		μA
nclk, rese	etb, hsync, vsync Digital Input C	haracteristics				1
VIH	Logical "1" Input Voltage	vdd_dig = +3.3V	2.0			V
VIL	Logical "0" Input Voltage	vdd_dig = +2.7V			0.8	V
IIH	Logical "1" Input Current	VIH = vdd_dig		1		nA
IIL	Logical "0" Input Current	VIL = vss_dig		-1		nA
d0 - d9, po	clk, hsync, vsync Digital Output	Characteristics				<u> </u>
VOH	Logical "1" Output Voltage	vdd_od=2.7V, lout=-1.6mA	2.2			V
VOL	Logical "0" Output Voltage	vdd_od=2.7V, lout =-1.6mA			0.5	V
IOZ	TRI-STATE Output Current	VOUT = vss_od VOUT = vdd_od		-0.1 0.1		μA μA
IOS	Output Short Circuit Current			+/-17		mA
Power Su	pply Characteristics					
IA	Analog Supply Current	Power down mode Operational mode	@27MHz @12MHz	670 60 50		μA mA mA
ID	Digital Supply Current	Power down mode Operational mode	@27MHz @12MHz	0 28 13		μA mA mA

Power Dissipation Specifications

The following specifications apply for all VDD pins= +3.0V. Boldfa	ce limits apply for TA = T_{MIN} to T_{MAX} : all other limits $T_A = 25^{\circ}C$.
--	--

Symbol	Parameter	Conditions	Min note 9	Typical note 8	Max note 9	Units
P _{dwn}	Power Down			2.0		mW
PWR	Average Power Dissipation	@27 MHz @12MHz		264 189		mW mW

	• •					
The following	specifications apply for all VDD pins	s= +3.0V. Boldface limits apply for TA	A = T _{MIN} to	T _{MAX} : all of	her limits T	A = 25°C
Symbol	Parameter	Conditions	Min (note 9)	Typical (note 8)	Max (note 9)	Units

Oymbol	i arameter	Conditions	(note 9)	(note 8)	(note 9)	
	Gain Resolution			7		Bits
	Step Size	(Gain / Resolution)		0.125		dB
	Maximum Gain			16		dB
	Minimum Gain			0.0		dB

AC Electrical Characteristics

Video Amplifier Specifications

Symbol	Parameter	Conditions	Min note 9	Typical note 8	Max note 9	Units
F _{mclk}	Input Clock Frequency		12		27	MHz
T _{ch}	Clock High Time	@ CLK _{max}	16.0			ns
T _{cl}	Clock Low Time	@ CLK _{max}	16.0			ns
	Clock Duty Cycle	@ CLK _{max}	45/55	50/50	55/45	min/max
T _{rc} , T _{fc}	Clock Input Rise and Fall Time			3		ns
F _{hclk}	Internal System Clock Fre- quency		12		27	MHz
T _{reset}	Reset pulse width		1.0			μS

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

All voltages are measured with respect to vss dig = vss ana = vss adc = vss od1 = vss od2 = 0V, unless otherwise Note 2: specified.

Note 3: When the voltage at any pin exceeds the power supplies (VIN < [vss_dig or vss_ana or vss_adc or vss_od1 or vss_od2] or VIN > [vdd_dig or vdd_ana or vdd_adc or vdd_od1 or vdd_od2]), the current at that pin should be limited to 25mA. The 50mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 25mA to two.

The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation Note 4 is dictated by TJmax, the junction-to-ambient thermal resistance (Θ_{JA}), and the ambient temperature (TA), and can be cal-

culated using the formula PDMAX = (TJmax - TA)/ Θ_{JA} . In the 48-pin LCC, Θ_{JA} is 69°C/W, so PDMAX = 1,811mW at 25°C

and 1,449 mW at the maximum operating ambient temperature of 50°C. Note that the power dissipation of this device under normal operation will typically be about 215 mW. The values for maximum power dissipation listed above will be reached only when the KAC-9637 is operated in a severe fault condition.

Note 5: Human body model is 100pF capacitor discharged through a 1.5kΩ resistor. Machine model is 220pF discharged through **ZERO Ohms**

See AN450, "Surface Mounting Methods and Their Effect on Product Reliability", or the section entitled "Surface Mount" Note 6: found in any post 1986 National Semiconductor Linear Data Book, for other methods of soldering surface mount devices. Note 7: The analog inputs are protected as shown below. Input voltage magnitude up to 500mV beyond the supply rails will not

damage this device. However, input errors will be generated If the input goes above AV+ and below AGND.

Typical figures are at TJ = 25°C, and represent most likely parametric norms Note 8:

Note 9: Test limits are guaranteed to AOQL (Average Outgoing Quality Level).

Parameter	Value	Units
Number of pixels (row, column) Total Active	488 x 672 488 x 648	pixels pixels
Array size (x,y Dimensions) Total Active	2.93 x 4.03 2.93 x 3.89	mm mm
Pixel Pitch	6.0	μ
Fill Factor without micro-lens	49	%

Image Sensor Specifications

The following specifications apply for All VDD pins = +3.3V, $T_A = 25^{\circ}$ C, Illumination Color Temperature = 2850°K, IR cutoff filter at 700nm, **mclk** = 27MHz, frame rate = 15Hz, unity video gain.

Parameter	neter Description		Typical note 8	Max note 9	Units
Optical Sensitivity ¹	Measured at the input of the A/D		2.40		Volt/lux.s
Dark Signal	The pixel output signal due to dark cur- rent.		0.15		Volt/s
Read Noise	The RMS temporal noise of the pixel out- put signal in the dark averaged over all pixels in the array.		1.5		LSBs
Dynamic Range The ratio of the saturation pixel output signal and the read noise expressed in dB.			57		dB
FPN	Fixed Pattern Noise: the RMS spatial noise in the dark excluding the effect of read noise.		0.2		%
PRNU Photo Response Non Uniformity: the RMS variation of pixel sensitivities as a percentage of the average optical sensi- tivity.			1.5		%

1 The optical sensitivity at the A/D output, in units of LSBs/lux.s, can be calculated using: $\frac{1024}{vrefp-vrefn}$ · Optical Sensitivity

KAC-9637

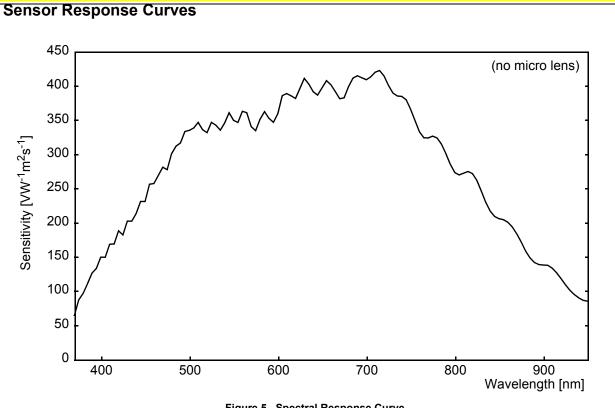


Figure 5. Spectral Response Curve

Functional Description

1.0 OVERVIEW

KAC-9637

1.1 Light Capture and Conversion

The KAC-9637 contains a CMOS active pixel array consisting of 488 rows by 648 columns. 24 columns of optically shielded (black) pixels are provided to the right of the array as shown in Figure 6. Only the middle 8 black columns are used for black level compensation. The black pixels are physically located at the end of each row but are read out first.

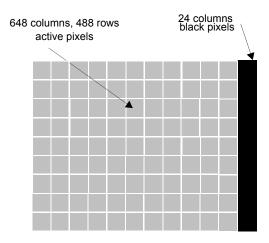


Figure 6. CMOS APS region of the KAC-9637

At the beginning of a given integration time the on-board timing and control circuit will reset every pixel in the array one row at a time as shown in Figure 7. Note that all pixels in the same row are simultaneously reset, but not all pixels in the array.

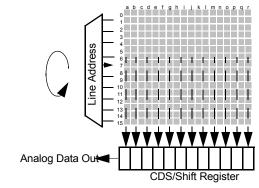


Figure 7. CMOS APS Row and Column addressing scheme

At the end of the integration time, the timing and control circuit will address each row and simultaneously transfer the integrated value of the pixel to a correlated double sampling circuit and then to a shift register as shown in Figure 7.

Once the correlated double sampled signals have been loaded into the shift register, the timing and control circuit will shift them out one pixel at a time.

The analog pixel signal is then fed into an analog gain channel as shown in figure 8. The gain channel can be digitally programmed allowing the signal level of pixel to be adjusted.

After gain adjustment the analog value of each pixel is converted to a 10 bit digital data as shown in figure 8.

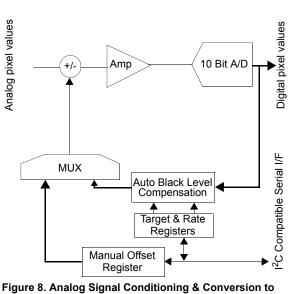


Figure 8. Analog Signal Conditioning & Conversion to Digital

The black level together with the full analog signal path offset is automatically compensated as shown in figure 8. This can be manually overridden.

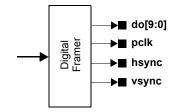


Figure 9. Digital Pixel Processing.

Finally the pixel data is framed and output on the digital video bus as shown in figure 9.

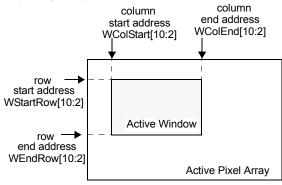
1.2 Program and Control Interfaces

The programming, control and status monitoring of the KAC-9637 is achieved through a two wire I^2C compatible serial bus. A device address pin is provided allowing two different device addresses to be selected for the serial interface as shown in Figure 10.

Figure 10. Control Interface to the KAC-9637.

Functional Description (continued)

2.0 DOUBLE BUFFERED REGISTERS


All programmable registers that effect the frame rate and integration timing are double buffered; such that the new values only take effect at the start of the new frame. When writing to all split double buffered registers, e.g. ITIMEH and ITIMEL, the following procedure must be followed:

- to change both the MSB and LSB, first write to the MSB register and then write to the LSB register,
- to change only the MSB, first write to the MSB register and then write the unchanged value of the LSB to the LSB register,
- to only change the LSB write to the LSB register.

3.0 WINDOWING

The integrated timing and control circuit allows any size window in any position within the active region of the array to be read out with a 4x4 pixel resolution. The window read out is called the *"Active Window"*.

Four coordinates (start row address, start column address, end row address & end column address) need to be programmed to define the size and location of the "*Active Window*" to be read out (*see Figure 11*).

Figure 11. Windowing

Notes:

 By default the "Active Window" is set to 320 columns by 240 rows. To program a VGA window aligned to the optical center to the pixel array the following codes need to be written to the windowing registers via the I²C interface

W	windowing registers via the I-C interface					
	19h	WROWS	00h			
	1Ah	WROWE	3Bh			
	1Bh	WROWLSB	23h			
	1Ch	WCOLS	00h			
	1Dh	WCOLE	50h			
	1Eh	WCOLLSB	23h			

• The "Active Window" registers are double buffered.

• The black pixels are read out at the beginning of each row even when not contained in the active window. The black pixel read out can be masked by setting the *BIKPixelEn* bit in the DVBUSCONFIG2 register to a logic 0.

4.0 ARRAY READOUT

The pixels in the array are read out in progressive scan. In progressive scan, every pixel in every row in the defined *"Active Window"* is consecutively read out, one pixel at a time. The first 8 pixels of every row are black unless masked out by setting the *BlkPixelEn* bit of the DVBUSCONFIG2 register to a logic 0.

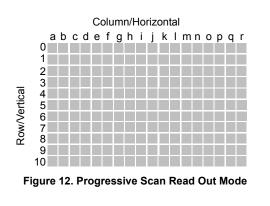
The scan direction can be programmed as follows:

Scan Direction	VScanDir	HScanDir
Default Scan Direction	1	1
Reverse Vertical Scan Direction	0	1
Reverse Horizontal Scan Direction	1	0
Reverse Vertical and Hori- zontal Scan Direction	0	0

4.1 Default Scan Direction

The default scan direction is to consecutively read out, one pixel at a time, starting with the left most pixel in the top most row. Hence, for the example shown in Figure 12, the read out order will be a0,b0,...,r0 then a1,b1,...,r1 and so on until pixel r20 is read out. See figure 12.

4.2 Reverse Vertical Scan Direction


The vertical scan direction can be reversed by setting the "VScanDir" bit in the VSCAN register to a logic 0, while setting the HScanDir bit in the HSCAN register to a logic 1. In this case for the example shown in Figure 12, the read out order will be *a10,b10,...,r10* then *a9,b9,...,r9* and so on until pixel *r0* is read out.

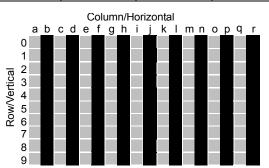
4.3 Reverse Horizontal Scan Direction

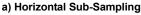
The horizontal scan direction can be reversed by setting the "HScanDir" bit in the HSCAN register to a logic 0, while setting the "VScanDir" bit in the VSCAN register to a logic 1. In this case for the example shown in Figure 12, the read out order will be r0,q0,...,a0 then r1,q1,...,a1 and so on until pixel a10 is read out.

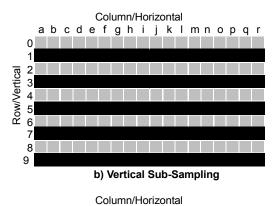
4.4 Reversing The Horizontal & Vertical Scan Direction

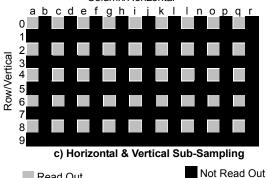
The horizontal scan direction can be reversed by setting both the "HScanDir" bit in the HSCAN and the "VScanDir" bit in the VSCAN register to a logic 0. In this case for the example shown in Figure 12, the read out order will be r10,q10,...,a10 then r9,q9,...,a9 and so on until pixel a0 is read out.

Functional Description (continued)


SUB-SAMPLING MODES 5.0


5.1 2:1 Sub-Sampling


KAC-9637


The timing and control circuit can be programmed to sub-sample pixels in the "Active Window" vertically, horizontally or both, with an aspect ratio of 2:1 as illustrated in figure 13.

Register Bit	VIDCONFIG Color	VSCAN VSub	HSCAN HSub
Vertical	0	1	0
Horizontal	0	0	1
Both	0	1	1

Read Out

Figure 13. Example of 2:1 Sub-sampling

- Note that the pixel read out will depend on the pro-Note a: grammed scan order as described in section 4.0.
- Note b: For max FPN performance it is recommended to always switch on the averaging feature when subsampling (see next section).

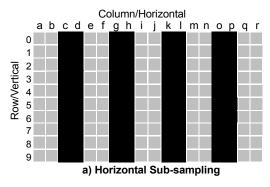
5.2 2:1 Sub-Sampling with Averaging

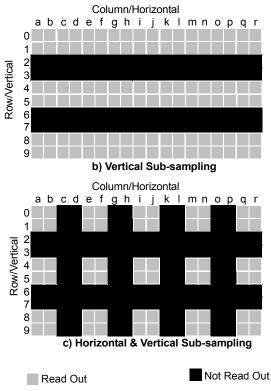
The timing and control circuit can be programmed to average neighboring pixels in the analog domain before sub-sampling in the horizontal direction only as shown in the table below

Register	VIDCONFIG	VSCAN	HSCAN
Bit	Color	VAvr	HAvr
Horizontal	0	0	1

When horizontal 2:1 subsampling with averaging is selected, neighboring pixels in the horizontal direction are combined as shown in figure 14. The value of the combined pixel is given by

-	а	b	с	d	е	f	g	h	i	j
1	H_1	H ₂	H ₁	H_2	H ₁	H ₂	H ₁	H ₂	H ₁	H ₂
-	H ₁	H_2	H ₁	H_2	H_1	H ₂	H ₁	H ₂	H ₁	H ₂
2	H ₁	H ₂								
	H ₁	H ₂								




Functional Description (continued)

5.3 4:2 Sub-Sampling

The timing and control circuit can be programmed to sub-sample pixels in the display window vertically, horizontally or both, with an aspect ratio of 4:2 as illustrated in figure 15

Register Bit	VIDCONFIG Color	VSCAN VSub	HSCAN HSub
Vertical	1	1	0
Horizontal	1	0	1
Both	1	1	1

Figure 15. Example 4:2 Sub-sampling

Note a: Note that the pixel read out will depend on the programmed scan order as described in section 4.0. Note b: For max FPN performance it is recommended to always switch on the averaging feature when subsampling (see next section).

5.4 4:2 Sub-Sampling with Averaging

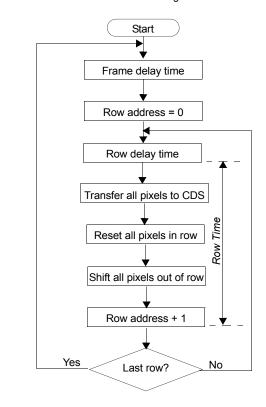
The timing and control circuit can be programmed to average neighboring pixels of the same color in the analog domain before subsampling. This can be done in the horizontal direction only as shown in the table below:

Register	VIDCONFIG	VSCAN	HSCAN
Bit	Color	VAvr	HAvr
Horizontal	1	0	1

When **horizontal** 2:1 subsampling with averaging is selected, neighboring pixels in the horizontal direction are combined as shown in figure 16. The value of the combined pixel is given by

	а	b	с	d	е	f	g	h
1	H ₁	\mathbb{H}_1	H_2	H ₂	H ₁	H_1	H ₂	H ₂
	H ₁	\mathbb{H}_1	H ₂	H ₂	H ₁	(H_1)	H ₂	H ₂
				H ₂				
	H ₁	(H_1)	H ₂	H ₂	H ₁	(H_1)	H ₂	H ₂

Figure 16. :4:2Horizontal Subsampling with Averaging



Functional Description (continued)

6.0 FRAME RATE & EXPOSURE CONTROL

6.1 Introduction

The frame time is defined as the time it takes to reset every pixel in the array, integrate the incident light, convert it to digital data and present it on the digital video port. This is not a concurrent process and is characterized in a series of events each requiring a certain amount of time as shown in Figure 17.

Figure 17. Frame Readout Flow Diagram

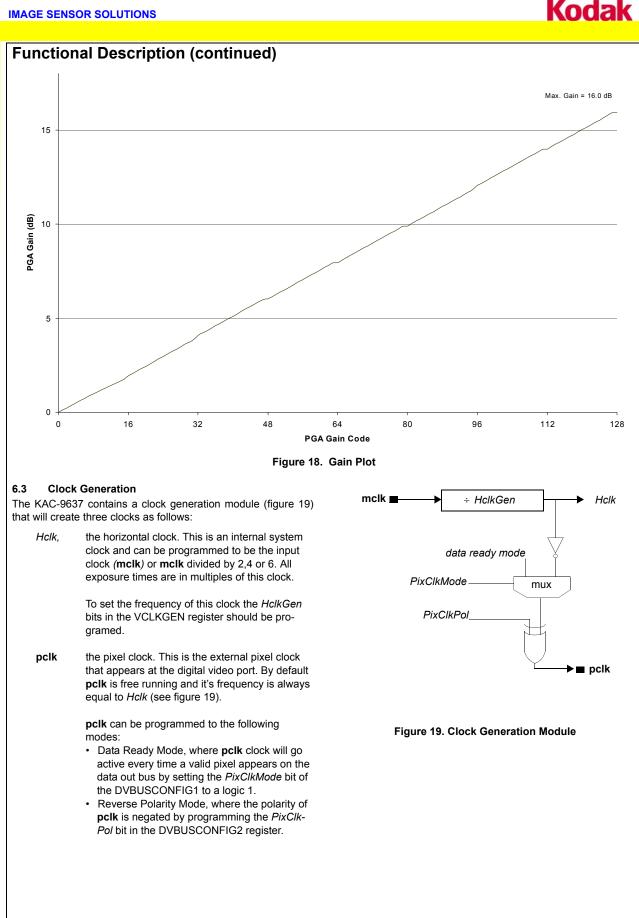
The following factors effect frame rate, exposure & signal level, the:

- frequency of Hclk
- size of the "Active Window"
- subsampling mode
- · programmed row delay
- programmed frame delay.

The following factor effects signal level only.

· analog gain

The following factor effects exposure & signal level:


integration time

This section describes how to program the frame rate and exposure time.

6.2 Analog Gain

A programmable analog gain amplifier is provided, allowing the gain level of the in-comming pixels to be adjusted before the analog to digital conversion.

16dB of gain programmable in 128 steps of 0.125dB, (see the PGA register). Note: Set register 0x4Ah to 0x00h when using monochrome mode

6.4 Full Frame Integration

Full frame integration is when each pixel in the array integrates light incident on it for the duration of a frame (see Figure 20).

The number of pixels processed per row is given by:

Functional Description (continued)

Where:

WEndCol is the "Active Window" column start address as programmed in registers WCOLE and WCOL-LSB.

WStartCol

is the "Active Window" column end address as programmed in registers WCOLS and WCOL-LSB.

The number of *Hclk* clock cycles required to process & shift out one row of pixels is given by:

$RN_{HClk} = R_{opcycle} + R_{ltime} + (N_{pix}*MH_{factor}) + R_{delay}$

Where:

R _{opcycle}	is a fixed integer value of 137 representing the
, ,	Row Operation Cycle Time in multiples of Hclk
	clock cycles. It is the time required to carry out
	all fixed row operations outlined in Figure 17.
R _{Itime}	When partial frame integration is enabled, (Prt-
	<i>FrmEn</i> bit in the ITIMECONFIG register is set to a logic 1), R_{ltime} is a fixed integer of 37. When
	Partial frame integration is disabled, (<i>PrtFrmEn</i>
	bit in the ITIMECONFIG register is set to a logic
	0), <i>R_{Itime}</i> is a fixed integer of 0.
N _{pix}	Is the number of pixels processed in a row.
MH _{factor}	Is 1 when horizontal subsampling is disabled
	and 0.5 when horizontal subsampling is enabled.
R _{delav}	a programmable value between 0 & 8191 repre-
uciay	senting the Row Delay Time in multiples of <i>Hclk</i> .
	This parameter allows the Row Operation Cycle
	time to be extended. The Rdelay value is pro-
	grammed in the RDELAYH and RDELAYL registers.

The number of rows in the active window is given by: *N*_{rows} = (*WEndRow - WStartRow + 1*) * *MV*_{factor}

Where:

WEndRow

is the "Active Window" row start address as programmed in registers WROWE and WROWLSB. WStartRow

is the "Active Window" row end address as programmed in registers WROWS and WROWLSB.

MV_{factor}

is 1 when vertical subsampling is disabled and

0.5 when vertical subsampling is enabled. The number of *Hclk* clocks required to process a full frame is given by:

Where:

N_{rows} F_{delay} is the number of rows in the "Active Window".

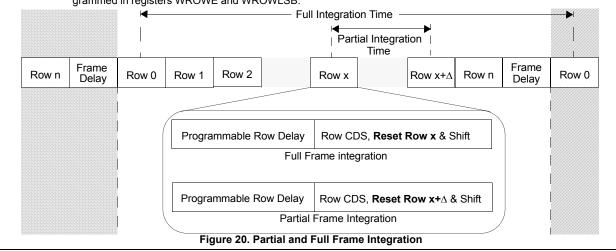
a programmable value between 0 & 32766 representing the *Inter Frame Delay* in multiples of RN_{Hclk} . This parameter allows the frame time to be extended. (See the Frame Delay High and Frame Delay Low registers). The *Fdelay* value is programmed in the FDELAYH and FDELAYL registers.

The frame rate is given by:

6.5 Partial Frame Integration

In some cases it is desirable to reduce the time during which the pixels in the array are allowed to integrate incident light without changing the frame rate.

This is known as *Partial Frame Integration* and can be achieved by resetting pixels in a given row ahead of the row being selected for readout as shown in Figure 20. The number of *Hclk* clocks required to process a partial frame is given by:


FP_{Hclk} = RN_{Hclk} * Itime

Where:

RN _{Hclk}	is the number of Hclk clock cycles required to
Itime	process & shift out one row of pixels. a programmable value between 0 & 32767 rep-
	resenting the number of rows ahead of the cur- rent row to be reset. This value must not be larger than the number of active rows. The <i>Itime</i>
	value is programmed in the ITIMEH and ITIMEL registers.
ata	

Note:

Upon system reset the partial frame integration is automatically enabled. It can be disabled by setting the *PrtFrmEn* bit in the ITIMECONFIG register to a logic 0 or by programming 0.

Functional Description (continued)

7.0 BLACK LEVEL & OFFSET ADJUSTMENT

The KAC-9637 allows for both fine and coarse black level adjustment. Coarse adjustment is made using the PIXELOFF-SET register and only needs to be done once at power up. Fine offset adjustment is done on a row basis and can be accomplished either atomically using the on chip black level compensation circuit or manually by disabling the on chip black level compensation circuit.

7.1 Coarse Black Level and Offset Adjustment

To ensure maximum performance of the CMOS image sensor, the natural offset of the pixel array needs to be minimized. Coarse adjustment is made using the PIXELOFFSET register and only needs to be done once at power up. This procedure is explained in detail in KAC-9637 Application Note 4.

7.2 Manual Black Level and Offset Adjustment

The offset channel can provide up to 255 levels of black level and offset adjustment. To manually adjust the black level and offset the *BlkLevEn* bit in the BLKLEVCONFIG register should be set to a logic 1. Eight bit offset values can then be programmed to register OFFSET.

Up to 255 levels of black level and offset adjustment are provided. To manually adjust the black level and offset the BlkLevEn bit in the BLKLEVCONFIG register should be set to a logic 0. The eight bit offset value can then be programmed using the Offset parameter in the OFFSET register.

7.3 Auto Black Level and Offset Adjustment

Automatic black level and offset adjustment mode is enabled by setting the *BlkLevEn* bit in the BLKLEVCONFIG register to a logic 0.

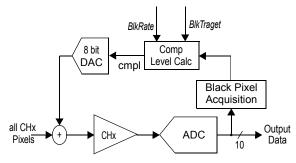


Figure 21: Digital Black Level & Offset Adjustment Loop

Figure 21 illustrates the automatic black level and offset compensation circuit contained within the sensor. For every row, the digitized values of the middle 8 black pixels are acquired and fed to the compensation level calculator circuit. This circuit is a digital first order exponential averaging filter. It calculates the compensation level (cmpl) that is required to ensure that for pixels that are optically black, the black level at the output of the ADC is equal to the desired black level. The desired black level (Clk-Target) can be programmed in the BLKTARGET register.

The black level control loop not only controls the black level of the pixels in the sensor array, but also controls the offset of the PGA and A/D in the system. The convergence rate of the cancellation loop can be set by programming the *BlkRate* parameter located in the BLKLEVCONFIG register. Small values of the *BlkRate* parameter ensure a fast convergence. High values of the *BlkRate* parameter reduce the noise in the calculated compensation level. The optimal setting of the *BlkRate* parameter is the result of a compromise between convergence speed after power up and image quality.

8.0 SYSTEM MANAGMENT

8.1 System Reset

Upon power up an on-chip power on reset block will ensure that the sensor is initialized to its reset state. After power up the sensor can be reset by asserting a logic 0 on the **resetb** pin or by writing to the *SenReset* bin in the PWD&RESET register.

Furthermore, all state machines contained in the sensors integrated timing and control block can be reset by writing to the *RstzSoft* bit in the OPCTRL register.

8.2 Power Up and Down

The KAC-9637 is equipped with an on-board power management system allowing the analog and digital circuitry to be switched off (power down) and on (power up) at any time.

The sensor can be put into power down mode by asserting a logic one on the **pdwn** pin or by writing to the *PwDn* bit in the PWD&RST register.

To power up the sensor a logic zero can be asserted on the **pdwn** pin or by writing to the *PwDn* bit in the PWD&RST register.

To ensure proper sensor operation the reference ladders must be intitialized upon power up of the sensor.

To switch on the sensor's reference resistors, the following sequence of codes should be written to the sensor via the ${\rm I}^2 C$ compatible interface at power up.

This must be done for the sensor to operate properly after reset or when the sensor is powered up.

Address (Hex)	Data (Hex)
INITREG2	01
POWCTRL	81

Functional Description

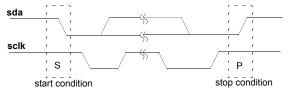
9.0 SERIAL BUS

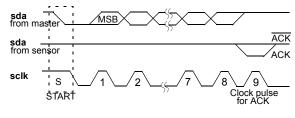
The serial bus interface consists of the ${\bf sda}$ (serial data) and ${\bf sclk}$ (serial clock) pins. The KAC-9637 can operate only as a slave.

The **sclk** pin is an input, it only controls the serial interface, all other clock functions within KAC-9637 use the master clock pin, **mclk**. **Mclk** must be running at least 4 times faster than **sclk** to write to the serial bus.

9.1 Start/Stop Conditions

The serial bus will recognize a logic 1 to logic 0 transition on the **sda** pin while the **sclk** pin is at logic 1 as the **start** condition. A logic 0 to logic 1 transition on the **sda** pin while the **sclk** pin is at logic 1 is interrupted as the **stop** condition as shown in Figure 22.

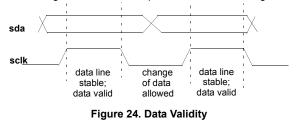



Figure 22. Start/Stop Conditions

9.2 Device Address

The *Device Address* can be changed by writing to the *l2cDevAddr* parameter in the *l2CMODE* Register.

9.3 Acknowledgment


The KAC-9637 will hold the value of the **sda** pin to a logic 0 during the logic 1 state of the *Acknowledge* clock pulse on **sclk** as shown in Figure 23.

9.4 Data Valid

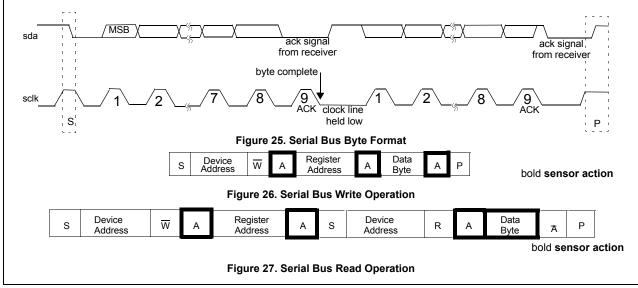
The master must ensure that data is stable during the logic 1 state of the **sclk** pin. All transitions on the **sda** pin can onlyoccur when the logic level on the sclk pin is "0" as shown in Figure 24

9.5 Byte Format

Every byte consists of 8 bits. Each byte transferred on the bus must be followed by an *Acknowledge*. The most significant bit of the byte is should always be transmitted first. See Figure 25.

9.6 Write Operation

A write operation is initiated by the master with a *Start Condition* followed by the sensor's *Device Address* and *Write* bit. When the master receives an *Acknowledge* from the sensor it can transmit an 8-bit internal register address. The sensor will respond with a second *Acknowledge* signaling the master to transmit 8 write data bits. A third *Acknowledge* is issued by the sensor when the data has been successfully received. The write operation is completed when the master asserts a *Stop Condition* or a second *Start Condition*. See Figure 26.


9.7 Read Operation

A read operation is initiated by the master with a *Start Condition* followed by the sensor's *Device Address* and *Write* bit. When the master receives an *Acknowledge* from the sensor it can transmit the internal *Register Address* byte. The sensor will respond with a second *Acknowledge*. The master must then issue a new *Start Condition* followed by the sensor's *Device Address* and *read* bit. The sensor will respond with an Acknowledge followed by the *Read Data* byte.

The read operation is completed when the master asserts a *Not Acknowledge* followed by *Stop Condition* or a second *Start Condition*. See Figure 27.

9.8 Advanced Write Mode

Several addresses can be written to without the need to re-start by setting the *AdvWr* bit in the I2CMODE register to a logic 1.

Functional Description (continued)

10.0 DIGITAL VIDEO PORT

The captured image is placed onto a flexible 10-bit digital port as shown in Figure 9. The digital video port consists of a programmable 10-bit digital Data Out Bus (**d[9:0]**) and three programmable synchronisation signals (**hsync**, **vsync**, **pclk**).

By default the synchronisation signals are configured to operate in *"slave"* mode. They can be programmed to operate in *"master"* mode.

The following sections are a detailed description of the timing and programming modes of digital video port.

The 10-bit digital video out bus can be tri-stated by asserting a logic 0 on the **oe** pin or by writing a logic 1 to the *TriState* bit in the DVBUSCONFIG3 register. In addition to this, the 10-bit digital video bus can be switch off to a logic 0 by writing a logic 0 to the *VBuSEn* bit of the DVBUSCONFIG2 register (see figure 28).

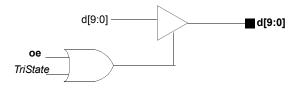


Figure 28. Digital Pixel Data Out Bus Circuit Diagram

10.1 Digital Video Data Out Bus (d[9:0])

A programmable barrel shifter is provided to map the output of the internal pixel data framer to the pins of the digital video bus as illustrated in Figure 29.

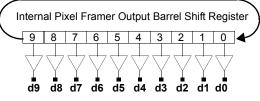
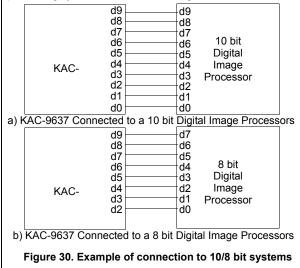



Figure 29. Digital Video Bus Switching Modes

The *Bshift* parameter in the DVBUSCONFIG2 register can be used to program the number of bits that the digital pixel data is shifted by.

This feature allows a programmable digital gain to be implemented when connecting the sensor to 8 or 10 bit digital video processing systems as illustrated in Figure 30.

Synchronisation Signals in Master Mode

In master mode the integrated timing and control block controls the flow of data onto the 12-bit digital port, three synchronisation outputs are provided:

- pclk is the pixel clock output pin.
- **hsync** is the horizontal synchronisation output signal.
- **vsync** is the vertical synchronisation output signal.

The vsync, hsync and pclk signals can be tri-stated by asserting a logic 0 on the oe pin or by writing a logic 0 to the *TriState* bit in the DVBUSCONFIG3 register. In addition to this vsync, hsync and pclk signals can be switch off by writing a logic 0 to the *VBuSEn* bit of the DVBUSCONFIG2 register. (see figure 31)

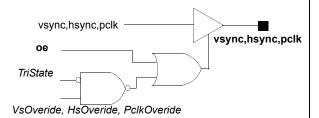
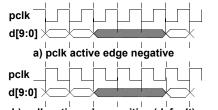
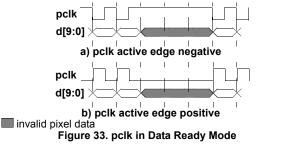



Figure 31. hsync,vsync and pclk output circuit diagram

10.2 Pixel Clock Output Pin (pclk) (Master Mode)

The pixel clock output pin, **pclk**, is provided to act as a synchronisation reference for the pixel data appearing at the digital video out bus pins **d[9:0]**. This pin can be programmed to operate in two modes:


 In free running mode, (the *PixClkMode* bit of DVBUSCONFIG1 register is set to a logic 0), the pixel clock output pin, **pclk**, is always running with a fixed period. Pixel data appearing on the digital video bus d[9:0] are synchronized to a specified active edge of the clock as shown in Figure 32.

b) pclk active edge positive (default) invalid pixel data

Figure 32. pclk in Free Running Mode

 In data ready mode, (the PixClkMode bit of DVBUSCONFIG1 register is set to a logic 1), the pixel clock output pin pclk will produce a pulse with a specified level every time valid pixel data appears on the digital video bus d[9:0] as shown in Figure 33.

Functional Description (continued)

By default the pixel clock is a free running active high (pixel data changes on the positive edge of the clock) with a period equal to the internal *hclk*. See section 6.3 for more **pclk** programming modes.

10.3 Horizontal Synchronisation Output Pin (hsync)

The horizontal synchronisation output pin, **hsync**, is used as an indicator for row data. The **hsync** output pin can be programmed to operate in two modes as follows:

Level mode should be used when the pixel clock, pclk, is programmed to operate in *free running mode*. In level mode the hsync output pin will go to the specified level (high or low) at the start of each row and remain at that level until the last pixel of that row is read out on d[9:0] as shown in Figure 34. The hsync level is always synchronized to the active edge of pclk. The hsync pin is put into level mode by setting the *HsyncMode* bit of the DVBUSCONFIG1 register to a logic 0. The active level of the hsync pulse is programmed using the *HsyncPol* bit of the DVBUSCONFIG1 register.

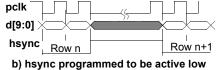
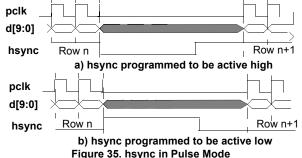
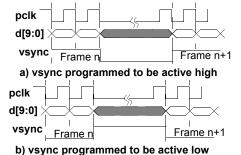



Figure 34. hsync in Level Mode

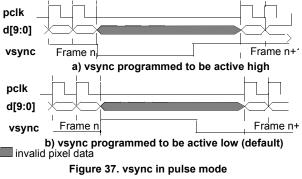
Pulse mode should be used when the pixel clock, pclk, is programmed to operate in *data ready mode*. In pulse mode the hsync output pin will produce a pulse at the end of each row. The width of the pulse will be a minimum of four pclk cycles and its polarity can be programmed as shown in Figure 35. The hsync level is always synchronized to the active edge of pclk. The hsync pin is put into pulse mode by setting the *HsyncMode* bit of the DVBUSCONFIG1 register to a logic 1.The active level of the hsync pulse is programmed using the HsyncPol bit of the DVBUSCONFIG1 register.



By default the first pixel data at the beginning of each row is placed on the digital video bus as soon as **hsync** is activated. Furthermore, **hsync** is de-activated upon the placement of the last pixel of the current row on the digital video bus the digital video bus. It is possible to shift the start and end edges of the **hsync** signal by programming the *HsyncStart* parameter of the DVBUSCONFIG0 register and the *HsyncEnd* parameter of the HYSNCADJUST register.

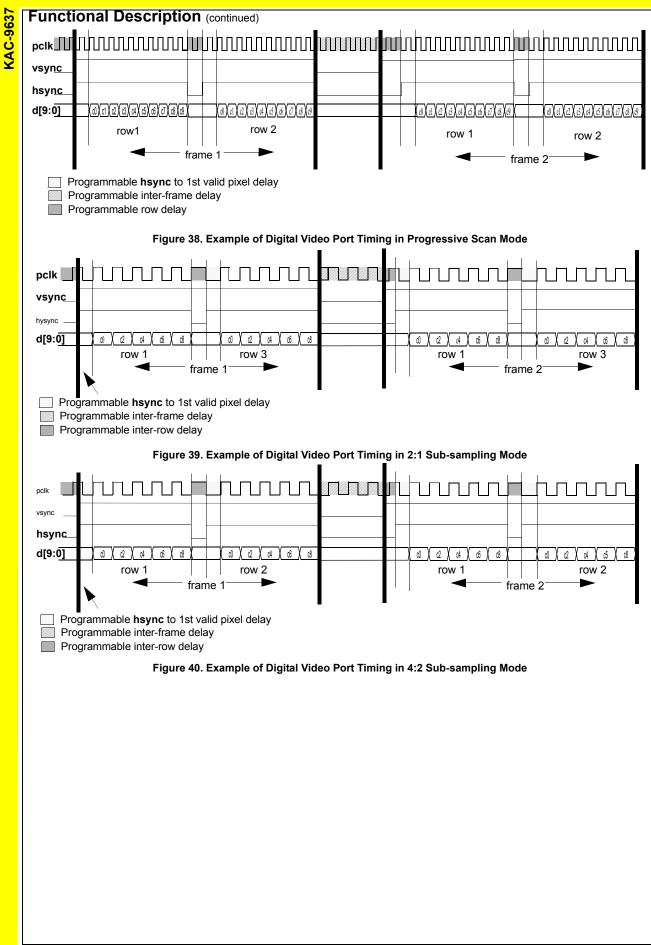
10.4 Vertical/Horizontal Synchronisation Pin (vsync)

The vertical synchronisation output pin, **vsync**, is used as an indicator for pixel data within a frame. The **vsync** output pin can be programmed to operate in two modes as follows:


Level mode should be used when the pixel clock, pclk, is programmed to operate in *free running mode*. In level mode the vsync output pin will go to the specified level (high or low) at the start of each frame and remain at that level until the last pixel of that row in the frame is placed on d[9:0] as shown in Figure 36. The hsync level is always synchronized to the active edge of pclk. The vsync pin is put into level mode by setting the VsyncMode bit of the DVBUSCONFIG1 register to a logic 0. The active level of the DVBUSCONFIG1 register.

b) vsync programmed to be active lov
 invalid pixel data

Figure 36. vsync in Level Mode


Pulse mode should be used when the pixel clock, pclk, is programmed to operate in *data ready mode*. In pulse mode the vsync output pin will produce a pulse at the end of each frame. The width of the pulse will be a minimum of four hclk cycles and its polarity can be programmed as shown in Figure 37. The vsync level is always synchronized to the active edge of pclk. The hsync pin is put into pulse mode by setting the *HsyncMode* bit of the DVBUSCONFIG1 register to a logic 1. The active level of the vsync pulse is programmed using the *VsyncPol* bit of the DVBUSCONFIG1 register.

By default the first pixel data at the beginning of each frame is placed on the digital video bus as soon as **vsync** is activated. Furthermore, **vsync** is de-activated upon the placement of the last pixel of the current frame on the digital video bus. It is possible to shift the start and end edges of the **vsync** signal by programming the *VsyncStart* parameter of the DVBUSCONFIG0 register and the *VsyncEnd* parameter of the HYSNCADJUST register.

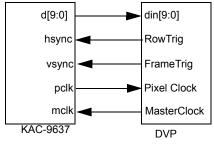
IMAGE SENSOR SOLUTIONS

Functional Description (continued)

10.5 Synchronisation Signals in Slave Mode

By default the sensor's digital video port synchronisation signals are configured to operate in slave mode. In slave mode the integrated timing and control block will only start frame and row processing upon the receipt of triggers from an external source.

Note:


1. Partial frame integration is disabled in slave mode.

 In order to get all rows out of the device in slave mode VsynPol and HsynPol bits of register 0x53h must be set to 0

Only two synchronization signals are used in slave mode as follows:

hsync is the row trigger input signal. vsync is the frame trigger input signal.

Figure 41 shows the KAC-9637's digital video port in slave mode connected to a digital video processor master DVP.

Figure 41. KAC-9637 in slave mode

10.6 Row Trigger Input Pin (hsync)

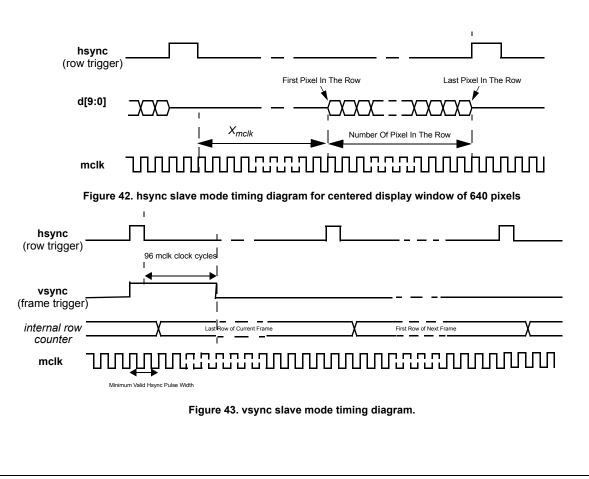
The row trigger input pin, **hsync**, is used to trigger the processing of a given row. It must be activated for at least two **mclk** cycles. The first pixel data will appear at **d[9:0]** " X_{mclk} " periods after the falling edge of the row trigger, where X_{mclk} is given by:

X_{mclk} = 146 + PrtFrmEn*37 - 8*BlkPixelEn

Where:

PrtFrmEn is the partial frame integration bit setting in the ITIMECONFIG register.

BlkPixelEn


is the BlkPixelEn bit setting in the DVBUSCONFIG2 register

The polarity of the active level of the row trigger can be programmed using the HsynPol bit of the DVBUSCONFIG1 register. By default it is active high.

10.7 Frame Trigger Input Pin (vsync)

The frame trigger input pin, **vsync**, is used to reset the row address counter and prepare the array for row processing. It must be activated for at least one more **mclk** cycle than the row trigger and the falling edge must be between 1 and 96 **mclk** cycles after falling edge of **hsync** as illustrated in Figure 43.

The polarity of the active level of the frame trigger is programmable. By default it is active high.

MEMORY MAP

KAC-9637

ADDR	Register	Reset Value	Description
00h	DEVID	47h	Device ID Register.
01h	REV	Latest Silicon	Revision Register
02h - 04h			Reserved
05h	VCLKGEN	00h	Clock Generation Register
06h	PWD&RST	00h	Power Down & Reset Register
07h	I2CMODE	AAh	I ² C compatible Serial Interface Configuration Register
08h			Reserved
09h	OPCTRL	02h	Operation Control Register
0Ah - 0Fh		00h	Reserved
10h	VIDCONFIG	01h	Video Color Configuration Register
11h	VSCAN	04h	Vertical Scan Configuration Register
12			Reserved
1 3h	HSCAN	04h	Horizontal Scan Configuration Register
14h			Reserved
15h	ITIMECONFIG	08h	Integration Time Configuration Register
16h-18h			Reserved
19h	WROWS	00h	Active Window Row Start Register
1Ah	WROWE	16h	Active Window Row End Register
1Bh	WROWLSB	23h	Active Window Row LSB Register
1Ch	WCOLS	00h	Active Window Column End Register
1Dh	WCOLE	28h	Active Window Column Start Register
1Eh	WCOLE	23h	Active Window Column LSB Register
20h	FDELAYH	00h	Frame Delay High Register
21h	FDELAYL	08h	Frame Delay Low Register
22h	RDELAYH	00h	Row Delay High Register
23h	RDELAYL	08h	Row Delay Low Register
24h	ITIMEH	00h	Integration Time High Register
25h	ITIMEL	00h	Integration Time Low Register
26h - 3Fh			Reserved
40h	BLKLEV	07h	Black Level Compensation Register
41h	BLKTARGET	10h	Black Level Target Register
42h	PGA	00h	Programmable Gain Amplifier
43h - 45fh			Reserved For The LM9648. Must be set to 00 Hex
46h	OFFSET	00h	Gain Offset Register
47h - 4Ah			Reserved For the LM9648. Must be set to 00 Hex.
4Bh- 4Fh			Reserved

MEMORY MAP (continued)

ADDR	Register	Reset Value	Description
50h	VSYNCADUST	08h	Vsync Adjust Register
51h	HSYNCADUST	08h	Hsync Adjust Register
52h	DVBUSCONFIG0	00h	Digital Video Bus Configuration Register 0
53h	DVBUSCONFIG1	0Ch	Digtal Video Bus Configuration Register 1
54h	DVBUSCONFIG2	F0h	Digtal Video Bus Configuration Register 2
55h	DVBUSCONFIG3	00h	Digtal Video Bus Configuration Register 3
56h - 7Fh			Reserved
80h	INITREG1	00h	Sensor Initialization Register 1
81h - 82h			Reserved
83h	PIXELOFFSET	1Eh	Sensor's Pixel Offset Register
84h			Reserved
85h	POWCTRL	81h	Sensor's Power Down Control Register
86h - 87h			Reserved
88h	INITREG2	00h	Sensor Initialization Register 2

Register Set

KAC-9637

The following section describes all available registers in the KAC-9637 register bank and their function.

Register I Address Mnemoni Type Reset Val	Read Onl			
Bit	Bit Symbol	Description		
7:0	Devld	The sensor's device ID.		
Register Name Silicon R Address 01 Hex Mnemonic REV Type Read On Reset Value Latest Si				
Bit	Bit Symbol	Description		
7:0	SiRev	The sensor's silicon revision.		
Register Name Clock Gen Address 05 Hex Mnemonic VCLKGEN Type Read/Write Reset Value 00 Hex.		N		
Bit	Bit Symbol	Description		
7		Reserved.		
2:1	HclkGen	Use to divide the frequency of the sensors master clock input, mclk, and generate the sen- sor's internal clock, <i>hclk</i> . $\begin{array}{c cccc} 00 & \div 1(default) \\ \hline 01 & \div 2 \\ \hline 10 & \div 4 \\ \hline 11 & \div 6 \\ \end{array}$		
0		Reserved.		
Register Name Power Down/Reset Register Address 06 Hex Mnemonic PWD&RST Type Read/Write Reset Value 00 Hex.				
Bit	Bit Symbol	Description		
7:2		Reserved.		
1	SenReset	Set this self clearing bit to a logic 1 to reset the sensor.		
0	PwDn	Set to a logic 1 to power down the chip. All internal clocks will be turned off in this mode. Set to a logic 0, (the default) to put the chip in power up mode.		
		Refer to section 8.2 for informa- tion on the low power down sequence.		

Register I Address Mnemoni Type Reset Val	Read/Write	-
Bit	Bit Symbol	Description
7:1	l2cDevAddr	Use to program the I ² C compat- ible device address. By default, the value is 55 hex.
0	AdvWr	Set to a logic 1 to activate the I^2C compatible serial interface's advance write option. In advance write mode, several addresses can be written to without the need to restart.
		Set to a logic 0, the default, to operate the I ² C compatible interface in standard write mode.
Register I Address Mnemoni Type Reset Val	09 Hex c OPCTRL Read/Writ	Control Register e
Bit	Bit Symbol	Description
7:3		Reserved.
2	MasterMode	Set to a logic 1 to configure the digital video port's synchronisa- tion's signal to operate in master mode.
		Set to a logic 0 (the default) to configure the digital video port's synchronisation signals to oper- ate in slave mode.
1		This bit is reserved for factory testing and must be set to a logic 1 at all times.
0	RstzSoft	Set this self clearing register to a logic 1 to reset all state machines contained in the inte- grated smart timing and control circuitry.

-	10 Hex ic VIDCON Read/Wr	onfiguration Register FIG
Bit	Bit Symbol	Description
7:1		Reserved.
0 Color		Set to a logic 1, (the default), to configure the sensor's smart timing and control circuit to operate in color mode. This bit always be set for color sensor. Set to a logic 0 to configure the sensor's smart timing and con- trol circuit to operate in mono-
Register Address	Name Vertical S 11 Hex	chrome mode. Scan Register
•	11 Hex ic VSCAN Read/Wr	
Address Mnemoni Type	11 Hex ic VSCAN Read/Wr	Scan Register
Address Mnemoni Type Reset Val Bit 7:3	11 Hex C VSCAN Read/Wr lue 04 Hex. Bit Symbol	Scan Register ite (Double Buffered) Description Reserved.
Address Mnemoni Type Reset Val Bit	11 Hex C VSCAN Read/Wr Iue 04 Hex.	Scan Register ite (Double Buffered) Description
Address Mnemoni Type Reset Val Bit 7:3	11 Hex C VSCAN Read/Wr lue 04 Hex. Bit Symbol	Description Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 0, to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 1 to enable vertical sub sampling.
Address Mnemoni Type Reset Val Bit 7:3 2	11 Hex VSCAN Read/Wr lue 04 Hex. Bit Symbol VscanDir	Scan Register ite (Double Buffered) Description Reserved. Set to a logic 1, (the default), to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 0, to set the sensor's vertical scan direction to operate from top to bottom. Set to a logic 1, to set the sensor's vertical scan direction to operate from bottom to top. Set to a logic 1 to enable vertical

Address13MnemonicHSTypeRe		13 Hex HSCAN	l Scan Register e (Double Buffered)
Bit	Bit S	Symbol	Description
7:3			Reserved.
2	HscanDir		Set to a logic 1, (the default) to set the sensor's horizontal scan direction to operate from left to right. Set to a logic 0, to set the sen- sor's horizontal scan direction to operate from right to left.
1	HSub		Set to a logic 1 to enable hori- zontal sub sampling. Set to a logic 0, (the default), to disable horizontal sub sampling.
0	HAvrg		Set to a logic 1 to enable hori- zontal averaging. Set to a logic 0, (the default) to disable horizontal averaging.

Register Name Address Mnemonic Type Reset Value		Integration Time Configuration Register 15 Hex ITIMECONFIG Read/Write (Double Buffered) 08 Hex.		
Bit	Bit	Symbol	Description	
7:4			Reserved.	
3	PrtFrmEn		Set to a logic 1, (the default), to turn on the Partial Frame Inte- gration.	
			Set to a logic 0, to turn off the partial Partial Frame Integration.	
2:0			Reserved, should always be set to a logic 0.	

2
3
9
ဝှ
Ó
<
Y

Register Set (continued)

Register NameActive Window Row Start RegisterAddress19 Hex

Mnemoni Type Reset Val	Read/Writ	e (Double Buffered)
Bit	Bit Symbol	Description
7:0	WStar- tRow[10:3]	Use to program the display win- dow's start row address' MSBs. The LSBs can be programmed using the DROWLSB register.

Register Name Address Mnemonic Type Reset Value		1A Hex WROWE	ndow Row End Register e (Double Buffered)
Bit	Bit Symbol		Description
7:0	WEnd- Row[10:3]		Use to program the scan win- dow's end row address' MSBs.

Register Name Address Mnemonic Type Reset Value	Active Window Row LSB Register 1B Hex WROWLSB Read/Write (Double Buffered) 23 Hex.		
Bit Bit	Symbol	Description	
7:6		Reserved	

7:6		Reserved	
5	WStartRow[2]	Use to program the display win- dow's start row address LSBs. The MSBs can be programmed using the WROWS register.	
4:3	WStart Row[1:0]	The two LSBs of the windows row start address are fixed to OHex. Although these bits can be written to they will have on effect on the LSBs of the win- dow's row start address.	
2	WEndRow[2]	Use to program the scan win- dow's end row address's LSBs. The MSBs can be programmed using the WROWE register	
1:0	WEnRow[1:0]	The two LSBs of the windows row end address are fixed to 3Hex. Although these bits can be written to they will have on effect on the LSBs of the win- dow's row end address.	

NOTE: The Row and Column start and end registers should be written to at power up to guarantee that the expected window size is set.

Register NameActive Window CoAddress1C HexMnemonicWCOLSTypeRead/Write (DoubleReset Value00 Hex.		indow Column Start Register te (Double Buffered)	
Bit	Bit Symbol	Description	
7:0	WStart- Col[10:3]	Use to program the display win- dow's start column address' MSBs. The LSBs can be pro- grammed using the WCOLLSB register.	
Register Address Mnemoni Type Reset Va	1D Hex ic WCOLE Read/Wri	indow Column End Register te (Double Buffered)	
Bit	Bit Symbol	Description	
7:0	WEnd- Col[10:3]	Use to program the scan win- dow's end column address' MSBs. The LSBs can be pro- grammed using the WCOLLSB	
Register Address Mnemoni	1E Hex	register. indow Column LSB Register B	
Address Mnemoni Type Reset Va	1E Hex ic WCOLLS Read/Wri lue 23 Hex.	indow Column LSB Register B te (Double Buffered)	
Address Mnemoni Type Reset Va Bit	1E Hex ic WCOLLS Read/Wri	indow Column LSB Register B te (Double Buffered) Description	
Address Mnemoni Type Reset Va	1E Hex ic WCOLLS Read/Wri lue 23 Hex.	indow Column LSB Register B te (Double Buffered) Description Reserved Use to program the display win- dow's start column address' LSBs. The MSBs can be pro-	
Address Mnemoni Type Reset Val Bit 7:6	1E Hex WCOLLS Read/Wri lue 23 Hex. Bit Symbol	indow Column LSB Register B te (Double Buffered)	
Address Mnemoni Type Reset Val Bit 7:6 5	IE Hex WCOLLS Read/Wri 23 Hex. Bit Symbol WStartCol[2]	indow Column LSB Register B te (Double Buffered)	

Register Set (continued) Register Name Frame Delay High Register Address 20 Hex Mnemonic FDELAYH Type Read/Write (Double Buffered) Reset Value 00 Hex.			
Bit	Bit Symbol	Description	
7:0	Fdelay[14:7]	Use to program the MSBs of the frame delay. Note the max allowed frame delay is 32767.	
Register Name Frame Delay Low Register Address 21 Hex Mnemonic FDELAYL Type Read/Write (Double Buffered) Reset Value 08 Hex.			
Bit	Bit Symbol	Description	
7		Reserved.	
6:0	Fdelay[6:0]	Use to program the LSBs of the frame delay. Note the max allowed frame delay is 32767.	
Register NameRow Delay High RegisterAddress22 HexMnemonicRDELAYHTypeRead/Write (Double Buffered)Reset Value00 Hex.			
		ite (Double Buffered)	
		Description	
Reset Val	ue 00 Hex.		
Reset Val	ue 00 Hex. Bit Symbol Rdelay[12:5] Name Row Dela 23 Hex c RDELAY Read/Wr	Description Use to program the MSBs of the row delay. ay Low Register	
Reset Val Bit 7:0 Register Address Mnemoni Type	ue 00 Hex. Bit Symbol Rdelay[12:5] Name Row Dela 23 Hex c RDELAY Read/Wr	Description Use to program the MSBs of the row delay. ay Low Register L	
Reset Val Bit 7:0 Register Address Mnemoni Type Reset Val	ue 00 Hex. Bit Symbol Rdelay[12:5] Name Row Dela 23 Hex c RDELAY Read/Wr ue 08 Hex.	Description Use to program the MSBs of the row delay. ay Low Register L ite (Double Buffered)	
Reset Val Bit 7:0 Register Address Mnemoni Type Reset Val Bit	ue 00 Hex. Bit Symbol Rdelay[12:5] Name Row Dela 23 Hex c RDELAY Read/Wr ue 08 Hex.	Description Use to program the MSBs of the row delay. ay Low Register L ite (Double Buffered) Description	

Register Name Integration Time High Register Address 24 Hex Mnemonic ITIMEH Read/Write (Double Buffered) Туре **Reset Value** 00 Hex. Bit **Bit Symbol** Description 7:4 Reserved 3:0 Itime[10:7] Program to set the integration time of the array. The value programmed in the register is the number of rows ahead of the selected row to be reset. Itime can not be greater then the number of active rows. Integration Time High Register Register Name Address 25 Hex ITIMEL Mnemonic Read/Write (Double Buffered) Type **Reset Value** 00 Hex. Bit **Bit Symbol** Description 7 Reserved. 6:0 Itime[6:0] Program to set the integration time of the array. The value programmed in the register is the number of rows ahead of the selected row to be reset. Register Name **Black Level Configuration Register** Address 40 Hex Mnemonic BLKLEVCONFIG Type **Read/Write Reset Value** 07 Hex. Bit **Bit Symbol** Description 7 Reserved. 3 BlkLevEn Set to a logic 1, (the default) to disable the internal black level compensation circuit. Set to a logic 0 to enable the internal black level compensation circuit. 2:0 BlkRate Use to adjust the rate at which the auto black level circuit converges to the programmed target, BlkTarget. See section 7.3 for more information. **Register Name Reference Black Level Register** Address 41 Hex BLKTARGET Mnemonic **Read/Write** Туре Reset Value 10 Hex. Bit **Bit Symbol** Description 7:0 BlkRef Use to program the target black level. See section 7.3 for more information.

Register Set (continued)

Register I Address Mnemoni Type Reset Val	nonic PGA Read/Write		
Bit	Bit	Symbol	Description
7			Reserved
6:0	PGA		Use to program the analog gain. Max gain is 16dB of gain pro- grammable in 128 steps of 0.125dB.

Register I Address Mnemoni Type Reset Val	46 Hex c OFFSET Read/Writ	OFFSET Read/Write		
Bit	Bit Symbol	Description		
7:0	Offset	Use to manually set the black level. See section 7.2 for more information.		
Register Name Gain Color Map Register Address 4A Hex Mnemonic CFAMAP Type Read/Write Reset Value 1B Hex.				
Bit	Bit Symbol	Description		
7:6	ColorMap0	Use to program the color map for gain channel 0. See section 6.2 for more information. Note: When using monochrome sensor set all bits [7:0] to 0.		
5:4	ColorMap1	Use to program the color map for gain channel 1. See section 6.2 for more information.		
3:2	ColorMap2	Use to program the color map for gain channel 2. See section 6.2 for more information.		
1:0	ColorMap3	Use to program the color map for gain channel 3. See section 6.2 for more information.		

Register Set (continued)

Register Name	VSYNC Latency Register
Address	50 Hex
Mnemonic	VSYCADJUST
Туре	Read/Write
Reset Value	08 Hex.
r	

Bit	Bit Symbol		Description
7:6		Reserved	d.
4:0	VsyncEnd	By default, in pulse mode the vsync signal will remain active for four pclk periods after end of frame. In level mode vsync will remain active for the duration of the frame delay time.	
		vsync s	idjust the time that the ignal goes inactive in of pclk as follows:
		0000	no vsync pulse
		00001	Reserved
		to 00111	
		01000	no adjustment, the default
		01001	+1 pclk clock
		to 11111	to +24 pclk clocks
•	Register Name HSYNC La		gister
Address 51 Hex Mnemonic HSYNCAD		JUST	
Type Read/Write			
Reset Val	ue 08 Hex.		
Bit	Bit Symbol		Description
7:4		Reserved	d

	=		-
7:4		Reserved.	
3:0	HsyncEnd	By default, in pulse mode the hsync signal will remain active for four pclk periods after end of each row. In level mode hsync will remain active for the duration of the row delay time.	
		hsync s	djust the time that the ignal goes inactive in of pclk as follows:
		0000	no hsync pulse
		0001	Reserved
		to 0111	
		01000	no adjustment, the default
		1001	+1 pclk clock
		to	to
		1111	+8 pclk clocks

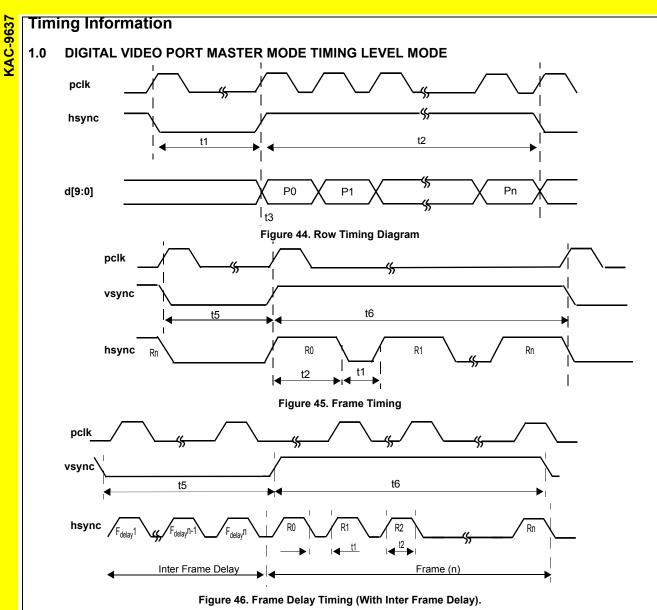
Register NameSynchronization Adjustment RegisterAddress52 HexMnemonicDVBUSCONFIG0TypeRead/WriteReset Value00 Hex.

Bit	Bit Symbol		Description
7:4	VsyncStart	By default, in pulse mode the vsync signal will remain active for four pclk periods after end of frame. In level mode vsync will remain active for the duration of the frame delay time.	
		vsync sig	djust the time that the gnal goes active in mul- celk as follows:
		0000 to 1111	0 pclk clocks to -15 pclk clock
3:0	HsyncStart	By default, in pulse mode the hsync signal will remain active for four pclk periods after end of row. In level mode hsync will remain active for the duration of the row delay time. Use to adjust the time that the hsync signal goes active in multiples of pclk as follows:	
		0000 to 1111	0 pclk clocks to -15 pclk clock

\sim
က
Q
ര
T
C
٢
\mathbf{i}

Register Set (continued)

Register NamePolarity Adjustment RegisterAddress53 Hex

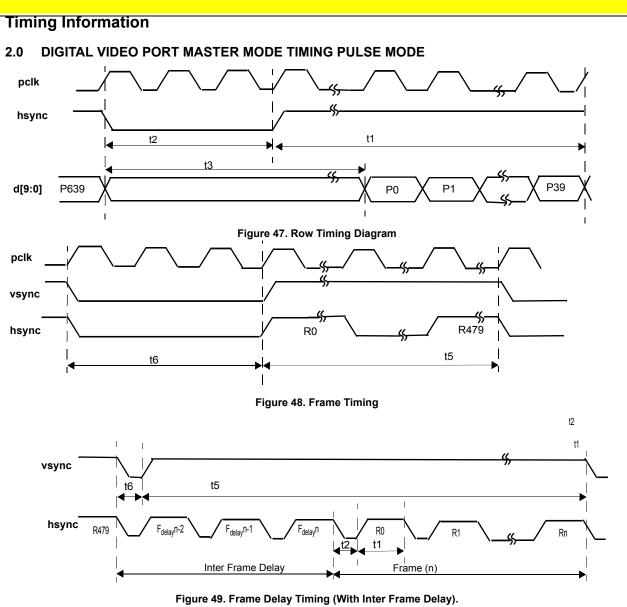

Mnemonic DVBUSCONFIG1 Type Read/Write Reset Value 0C Hex.		
Bit	Bit Symbol	Description
7		Reserved
6	PixClkMode	Set the to a logic 1 to operate pclk to "data ready mode". Set to a logic 0, the default, to set pclk to " <i>free running mode</i> ".
5	VsyncMode	Set to a logic 1 to operate the vsync pin to "pulse mode". Set to a logic 0, (the default) to operate the vsync signal to "level mode".
4	HsyncMode	Set to a logic 1 to operate the hsync signal to pulse for a mini- mum of four pixel clocks at the end of each row. Set to a logic 0, (the default) to force the hsync signal to a level indicat- ing valid data within a row.
3:2		Reserved
1	VsyncPol	Assert to force the vsync signal to generate a logic 1 during a frame readout (<i>Level Mode</i>), or a negative pulse at the end of a frame readout (<i>Pulse Mode</i>). Clear (the default) to force the vsync signal to generate a logic 0 during a frame readout (<i>Level Mode</i>), or a positive pulse at the end of a frame readout (<i>Pulse Mode</i>). NOTE: In slave mode this bit must be set to 0.
0	HsyncPol	Assert to force the hsync signal to generate a logic 1 during a row readout (<i>Level Mode</i>), or a negative pulse at the end of a row readout (<i>Pulse Mode</i>). Clear (the default) to force the hsync signal to generate a logic 0 during a row readout (<i>Level Mode</i>), or a positive pulse at the end of a readout (<i>Pulse Mode</i>). NOTE: In slave mode this bit must be set to 0.

Register Address Mnemoni Type Reset Val	54 Hex c DVBUSC Read/Wri		
Bit	Bit Symbol	Description	
7	OutputEn	Set to a logic 0 to tri-state all output signals (data and control) on the digital video port. set to a logic 1, (the default) to enable all signals (data and control) on the digital video port.	
6	BlkPixelEn	Set to a logic 1, (the default) to read out the middle 8 black pix- els at the start of every row. Set to a logic 0 to mask out the black pixel readout.	
		NOTE: In master mode when the black pixels are enabled the active edge of Hsync corre- sponds to the first black pixel.	
5	PixClkPol	Set to a logic 1 to set the active edge of the pixel clock to nega- tive. Set to a logic 1, (the default), to set the active edge of the clock to positive.	
4		Reserved	
3:0	Bshift[3:0]	Use to program the routing of the MSB output of the internal video A/D to a bit on the digital video bus.	
		0000 A/D[9:0] -> d[9:0]	
		0001 A/D[9:0] -> d[8:0],d[9]	
		0010 A/D [9:0] ->d[7:0],d[9:8]	
		0011 A/D [9:0] -> d[6:0],d[9:7]	
		0100 A/D [9:0] -> d[5:0],d[9:6]	
		0101 A/D[9:0] -> d[4:0],d[9:5] 0110 A/D [9:0] -> d[3:0],d[9:4]	
		0110 A/D [9:0] -> d[3:0],d[9:4] 0111 A/D [9:0] -> d[2:0],d[9:3]	
		1000 A/D [9:0] ->d[1:0],d[9:2]	
		1001 A/D [9:0] -> d[0],d[9:1]	
		1010 A/D [9:0] -> d[9:0]	

Register Set (continued)				
Register Name Video Output Tristate Adjustment Register Address 55 Hex Mnemonic DVBUSCONFIG3 Type Read/Write Reset Value 00 Hex.Register Set (continued)				
Bit	Bit Symbol	Description		
7:5		Reserved		
4	Tristate	Digital output tristate. Set this bit to 1 to tristate all digital outputs. (vsync , hsync , pclk , data, external sync). Use can override this setting with independent override bits.		
3	VsOverride	Overrides tri-stating of Vsync port in master timing mode. To enable override, set bit to 1.		
2	HsOverride	Overrides tri-stating of Hsync port in master timing mode. To enable override, set bit to 1.		
1	PclkOverride	Overrides tri-stating of Pclk port in master timing mode. To enable override, set bit to 1.		
0	ExtSyncOver- ride	Overrides tri-stating of external sync port in master timing mode. To enable override, set bit to 1.		
Register Address Mnemoni Type Reset Val	80 Hex c INITREG1 Read/Writ	on Register 1 e		
Bit	Bit Symbol	Description		
7:0	PixCal	Write 5 Hex to enable the pixel offset calibration circuits.		
		Notes: This register can only be accessed when the Int2 param- eter in the INTREG2 register is set to 01Hex.		
		PixCal should be reset to 00Hex at the end of the pixel offset cal- ibration procedure (see section 7.1 for more details).		
Address Mnemoni Type	Mnemonic PIXELOFFSET			
Bit	Bit Symbol	Description		
7:0	PixelOffset	Use to compensate for the sen- sors natural pixel offset. See section 7.1 for more details.		

Register Name Power Down Control Register Address 85 Hex Mnemonic POWCTRL Type Read/Write Reset Value 81 Hex.

ue 81 Hex.	
Bit Symbol	Description
Patrol	Write 82Hex before power down to minimize the sensor's power down current.
	Write 81Hex after power up from the power down mode to ensure correct operation of the sensor.
	Refer to section 9.2 for more information.
lame Initializati 88 Hex NITREG2 Read/Writ ue 00 Hex.	-
Bit Symbol	Description
Int2	Write 1 Hex to activate the sen- sor's initialization registers
	Write 0 Hex to disable the sen- sor's initialization registers.
	Note this register is used for
	 the pixel array offset calibration (section 7.2) power/up and down of the
	Patrol lame Initializati 88 Hex INITREG2 Read/Writ ie 00 Hex. Bit Symbol

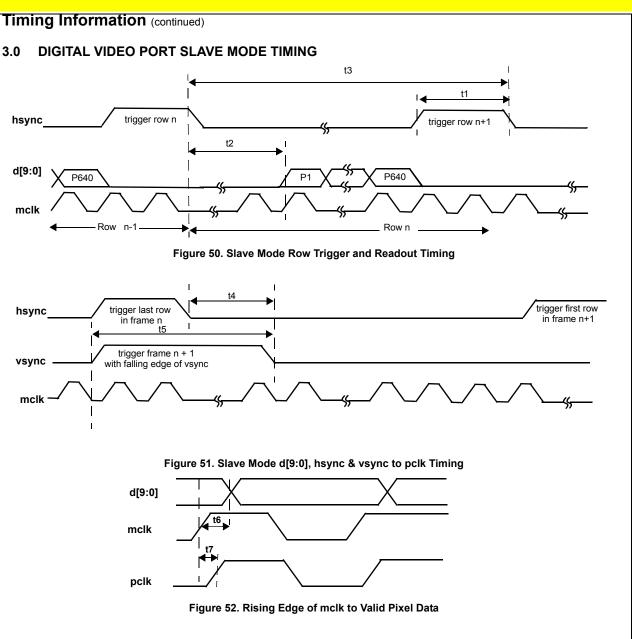

Label	Descriptions		Min	Тур	Мах	
tO	pclk period		37.04ns	45.45ns	83.33ns	
t1	hsync inactive ^{1,2}	level mode	(RN _{Hclk} - N _{pix} + <i>HsyncStart - HsyncEnd - 8*BlkPixelEn</i>) * Hclk			
t2	hsync active ^{1,2}	level mode	(HsyncEnd - HsyncStart + 8*BlkPixelEn + N _{pix}) * Hclk			
t3	first valid pixel data after hsy	nc active	HsyncStart + Hclk			
t5	vsync inactive ^{1,3}	level mode	((F _{delay} *RN _{Hclk}) + R _{opcycle} + R _{itime} + VsyncStart - VsyncEnd) * Hclk			
t6	vsync active ^{1,3}	level mode	(VsyncEnd - VsyncStart + (RN _{Hclk} * N _{rows})) * Hclk			

1. See section 6.4 for definitions of $\mathsf{RN}_{\mathsf{Hclk}}$ and $\mathsf{FN}_{\mathsf{Hclk}}$

2. The values of HsyncStart and HsyncEnd are stored in the DVBUSCONFIG0 and HSYNCADJUST registers respectively.

3. The values of VsyncStart and VsyncEnd are stored in the DVBUSCONFIG0 and VSYNCADJUST registers eruptively.

Label	Descriptions	Min	Тур	Мах
tO	pclk period	37.04ns	45.45ns	83.33ns


t1	hsync inactive ^{1,2} pulse mo	e (RN _{Hclk} - 3) * Hclk
t2	hsync active ^{1,2} pulse mo	e 3 * Hclk
t3	first valid pixel data after hsync active	145 - Hclk
t5	vsync inactive ^{1,3} pulse mo	e (FN _{Hclk} - 3) * Hclk
t6	vsync active ^{1,3} pulse mo	e 3 * Hclk

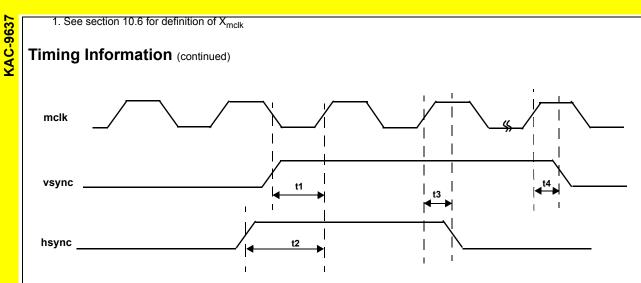
1. See section 6.4 for definitions of $\mathsf{RN}_{\mathsf{Hclk}}$ and $\mathsf{FN}_{\mathsf{Hclk}}$

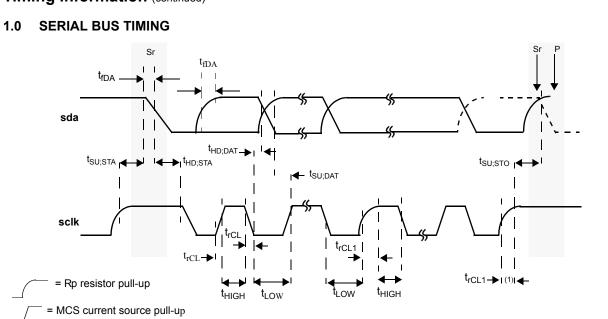
2. The values of HsyncStart and HsyncEnd are stored in the DVBUSCONFIG0 and HSYNCADJUST registers respectively.

3. The values of VsyncStart and VsyncEnd are stored in the DVBUSCONFIG0 and VSYNCADJUST registers eruptively.

The following specifications are from simulation. For the minimum value the conditions are all supply pins = +3.0V & C_L = 5pF and 0C while the maximum value conditions are all supply pins = 3.6V & C_L = 25pF.

Label	Descriptions	Min	Тур	Мах
t1	Pulse width of row trigger	2 * mclk		
t2	First pixel out after falling edge of row trigger ¹	X _{mclk}	X _{mclk}	X _{mclk}
t3	Minimum time between row triggers ²	(X _{mclk} +N _{col}) * mclk		
t4	Time to falling edge of frame trigger after falling edge of last row trigger in current frame.	1*mclk		96 * mclk
t5	Pulse width of Frame trigger	3* mclk		
t6	Time to valid pixel data after rising edge of mclk	14.9ns		39.7ns
t7	Time to pclk rising edge after rising edge of mclk	14.5ns		35.0ns



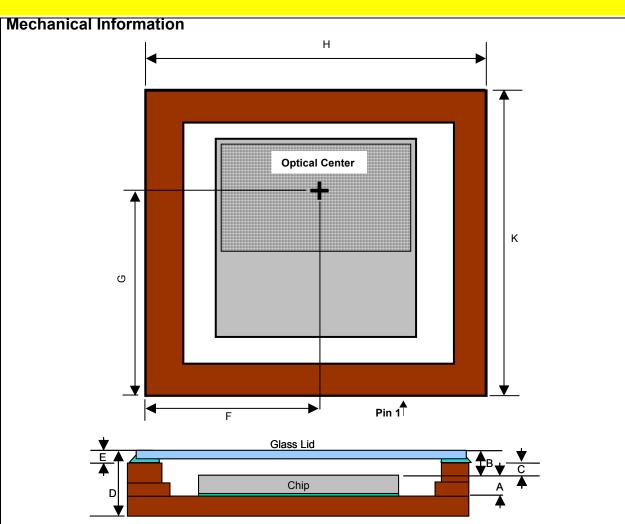

Figure 53. Set up and Hold Times for Slave Mode

PARAMETER	LABEL	MIN	MAX	UNIT
Vsync rising edge to Mclk rising (set-up time)	t1	-6.0	14.6	ns
Hsync rising edge to Mclk rising (set-up time)	t2	-7.3	14.2	ns
Mclk rising edge to Hsync falling edge (hold time)	t3	23.8	45.3	ns
Mclk rising edge to Vsync falling edge (hold time)	t4	23.4	44.0	ns

Figure 54. Set up and Hold times for Slave Mode

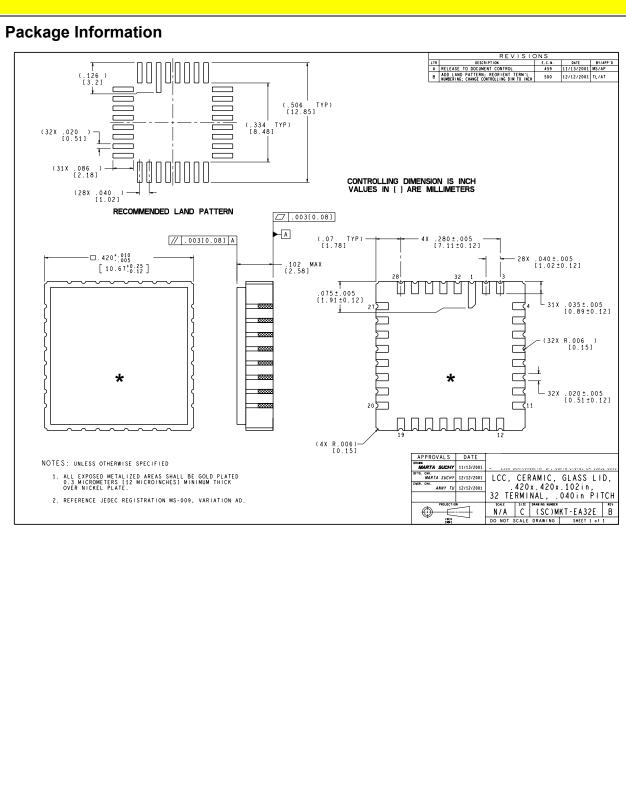
Timing Information (continued)

(1) Rising edge of the first **sclk** pulse after an acknowledge bit.


Figure 1. I²C Compatible Serial Bus Timing.

The following specifications apply for all supply pins = +3.3V, C_L = 10pF, and *sclk* = 400KHz unless otherwise noted. Boldface limits apply for TA = T_{MIN} to T_{MAX}: all other limits T_A = 25^oC (Note 7)

PARAMETER	SYMBOL	MIN	MAX	UNIT
scik clock frequency	f _{SCLH}	0	400	KHz
Set-up time (repeated) START condition	t _{SU;STA}	0.6	-	μS
Hold time (repeated) START condition	t _{HD;STA}	0.6	-	μS
LOW period of the sclk clock	t _{LOW}	1.3	-	μS
HIGH period of the sclk clock	t _{HIGH}	0.6	-	μS
Data set-up time	t _{SU;DAT}	180	-	nS
Data hold time	t _{HD;DAT}	0	0.9	μS
Set-up time for STOP condition	t _{SU;STO}	0.6		μS
Capacitive load for and sclk lines	Cb		400	pF


IMAGE SENSOR SOLUTIONS

Kodak

Dimension	Description	min (mm)	typ (mm)	max (mm)
A	Distance from top of die to bottom of cavity	0.788	0.820	0.852
В	Top of die to top of glass lid	0.690	0.970	1.250
С	Top of package to bottom of glass lid	0.250	0.420	0.590
D	Max total thickness of package			2.580
E	Thickness of lid	0.530	0.640	0.750
F	X-Coordinate of optical center (nom)		5.340	
G	Y-Coordinate of optical center (nom)		6.425	
н	X-Dimension of Package	10.540	10.670	10.970
к	Y-Dimension of Package	10.540	10.670	10.970
	Die Rotational Accuracy	-2 ⁰	0°	+2°

Email:imagers@kodak.com

